{{featured_button_text}}

The basic concept for robotic blacksmithing, formally called metamorphic manufacturing, was demonstrated in 2017 when a team of undergraduates from The Ohio State University added hardware and software to a conventional computer numeric control milling machine to adapt it for controlled deformation. The work was in response to a US$25,000 challenge by the government-funded consortium LIFT (Lightweight Innovations for Tomorrow) to demonstrate the key concepts of digitally controlled deformation-based shaping.

But that was just a start. Today, much research and development remains before we have autonomous machines shaping metal into unique safety-critical items.

Fully developing the robot blacksmith requires a synthesis of technologies. The system must be able to know the shape, temperature and condition of the material at each location of the part being formed. Then it must be able to control the temperature to produce the right structure and properties. The press must squeeze the component where needed with robotic control, deforming the part bit by bit. And, a computer must make decisions on how to move and strike the part next in order to optimize shape and properties, often learning from how previous parts were made.

All of these base technologies are progressing rapidly, and there is no reason they cannot be quickly melded together as a useful and practical manufacturing technology, as a recent roadmapping study has shown.

History shows that when diverse groups come together to form a new industry, the birthplace of that innovation (turning the idea into businesses) reaps the long-term benefits. Detroit with automobiles and Silicon Valley with computers are obvious examples but there’s also glass manufacturing in Toledo, polymer engineering in Akron and medical device engineering in Minneapolis. The more recent examples of thriving technical clusters are often outside the U.S., with personal electronics manufacturing centered around Shenzhen, China, and advanced semiconductor devices in Singapore. The early clusters were serendipitous. The later ones are usually the result of deliberate and smart policy decisions.

There are already many examples of great technology that is born in the United States, then manufactured elsewhere. For example, many of the core technologies in smartphones were developed in labs in the U.S. but production is now spread across the world. The next wave of innovation will likely be located where skills are deep due from staffing and improving current factories. Robotic blacksmithing provides an opportunity for the United States to be the leader if it wants to. The core in keeping this virtuous cycle going in any location is in developing the factories, or the machines that build the machines.

Glenn S. Daehn is the Fontana Professor of Materials Science and Engineering at The Ohio State University. This article is republished from The Conversation under a Creative Commons license. Read the original article.

0
0
0
0
0